

$$S = 180(9-2)$$

$$= 180(7)$$

$$= \frac{1260}{9} = 140^{\circ}$$

360=13.3°

3. The London Eye is a famous Ferris Wheel in London. The car at each vertex of a Ferris Wheel holds a maximum of twenty-five people. The sum of the interior angles of the Ferris Wheel is 11160°. How many cars are on the Ferris Wheel? How many people can ride on the Ferris

(64)(25) = 1600 people

Wheel?

$$\frac{11160 = 180(n-2)}{180}$$

4. Find the length of the midsegment of the trapezoid.

m:dseyment =
$$\frac{b_1 + b_2}{2}$$
= $\frac{9.2 + 12.8}{2}$
= $\frac{22}{2}$

5. Find the measure of the variables.

6. Find the length of BD. Show your thinking.

Solve for x. Each figure is a parallelogram.

$$2x+30+3x+50=180$$

 $5x+80=180$
 $5x=100$
 $x=20$

Solve for x. Each figure is a parallelogram.

$$VE = 2y + 2$$

$$ET = 5y - 10$$

$$SE = 6$$

$$EU = \frac{x}{3}$$

$$VE = ET$$

$$2y+2 = 5y-10$$

$$2 = 3y-10$$

$$12 = 3y$$

$$y = 4$$

$$SE = EU$$

$$6 = \frac{x}{3}$$

$$x = 18$$

LMNO is a parallelogram. If NM = x + 5 and OL = 2x + 3, find the value of x and then find NM and OL.

$$MN = 0L$$
 $NM = 2+5$
 $X+5 = 2 \times +3$ $= 7$
 $S = \times +3$ $0L = 2(2)+3$
 $X = 2$ $= 4+3$

$$NM = 2+5$$
= 7

 $OL = 2(2)+3$
= 4+3

= 7

In rectangle KLMN, KM = 10x + 24 and LN = 64. Find the value of x.

$$KM = LN$$
 $lox + z4 = 64$
 $lox = 40$
 $x = 4$

What is XZ? The diagram is not to scale.

$$a^{2}+b^{2}=c^{2}$$
 $a^{2}+6^{2}=15^{2}$
 $a^{2}+81=225$
 $a^{2}=144$
 $a=12$
 $x=24$

Figure ABCD is a square. If AC + BD = 56, what is the area, in square units, of $\triangle AXD$? $\times + \times = 56$

X=28

$$A_{\Delta} = \frac{1}{2}bh = \frac{1}{2}(14)(14) = \frac{1}{2}(154) = 98$$

In quadrilateral ABCD, $m\angle ACD = 2x + 4$ and $m\angle ACB = 5x - 8$. For what value of x is ABCD a rhombus?

Classify Quadrilateral ABCD as a parallelogram, rectangle rhombus, square, kite, or trapezoid.

A(3, 2), B(7, 0), C(11, 2), and D(7, 4).

$$AB = \sqrt{(7-5)^{2} + (0-2)^{2}}$$

$$= \sqrt{(-1)^{2} + (-2)^{2}}$$

$$= \sqrt{(6+2)} = \sqrt{20}$$

$$B C = \sqrt{(11-7)^2 + (2-2)^2}$$

$$= \sqrt{(4)^2 + (2)^2}$$

$$= \sqrt{16+4} = \sqrt{20}$$

$$= 8$$

$$= \sqrt{8z + 0z}$$

$$= \sqrt{8z + 0z}$$

4 = sides & Diagonals not =.

$$CD = \sqrt{(7-11)^2 + (4-2)^2}$$

$$= \sqrt{(-4)^2 + (2)^2}$$

$$= \sqrt{16 + 4} = \sqrt{20}$$

$$AD = \sqrt{(7-3)^2 + (4-2)^2}$$

$$= \sqrt{4^2 + 2^2}$$

$$= \sqrt{16+4} = \sqrt{20}$$

$$BD = \sqrt{(7-7)^2 + (4-0)^2}$$

$$= \sqrt{0^2 + 4^2}$$

$$= 4$$